Our 24/7 cancer helpline provides information and answers for people dealing with cancer. We can connect you with trained cancer information specialists who will answer questions about a cancer diagnosis and provide guidance and a compassionate ear.
Chat live online
Select the Live Chat button at the bottom of the page
Our highly trained specialists are available 24/7 via phone and on weekdays can assist through online chat. We connect patients, caregivers, and family members with essential services and resources at every step of their cancer journey. Ask us how you can get involved and support the fight against cancer. Some of the topics we can assist with include:
- Referrals to patient-related programs or resources
- Donations, website, or event-related assistance
- Tobacco-related topics
- Volunteer opportunities
- Cancer Information
For medical questions, we encourage you to review our information with your doctor.
- Triggering Signals of BRCA1 Breast Cancer (K Kessenbrock)
- Testing Diverse Groups Finds New Breast Cancer Genes (L Teras)
- Black Women & Genetic Testing (J Palmer)
- Women 65+ & Genetic Tests for Breast Cancer Risk (L Teras)
- High-Risk Genes and Screening (A Patel)
- New Risk Calculation May Affect Breast Cancer Screening (L Teras)
- Black Men and Breast Cancer (H Sung)
- Platelets May Help Breast Cancer Spread (E Battinelli)
- Natural Killer Cells & TNBC (R. Chakrabarti)
- Improving Chemotherapy (O Sahin)
- Combo Treatment for TNBC (K Varley)
- Treatments Attack Cell Division (A Holland)
- ER+ Treatment in Mice (P Kenny)
- Blood DNA Monitors Metastasis Treatment (H P Ji)
- PTK6 Gene as Treatment Target (H Irie)
- Time-Lapse Cell Movies (S Spencer)
- 3D Mini Breast Tumors May Help ID New Cancer Treatments
- AI Tool Improves Breast Cancer Prognosis Accuracy
- Exercise & Sitting Time (E. Rees-Punia)
- Cancer Risk Factors in LGBTQ Populations (B. Charlton)
- CPS-3 Disparities Studies
- Cancer Disparities in the US (F. Islami)
- Housing Assistance and Mammograms (H Lee)
- Clinical Trial Treatment Cost App (L Hamel)
- Podcasts, TheoryLab
- Patients Health Insurance Tool (M. Politi)
- Breast Cancer Treatment in Ethiopia (A. Jemal)
- Better Survival Requires Better Insurance (J Zhao)
- Medicaid Eligibility Limits (J Zhao)
- New Treatment for Neuroblastoma (A Heczey)
- Oncogenic Fusions AML (S Meshinchi)
- Genetic Risks (L Teras)
- New Medulloblastoma Drugs (J Rodriguez-Blanco)
- Potential New Hope for MLL (J Grembecka)
- Increase in Brain Tumor Diagnosis (K Miller)
- Longer Life Expectancy for Survivors (J Yeh)
- Potential Target for New Osteosarcoma Drugs (C Benavente)
- At-Home Chemo for Children with HR ALL (L Ranney)
- Childhood Cancer Research Landscape Report
- Tumor-Infiltrating Neutrophils (R. Sumagin)
- New Epigenetic Target (K Rai)
- Extra Chromosomes (Aneuploidy) Effect on Cancer (J. Sheltzer)
- Discovery of a New Biomarker Is the First Step to New Treatment (C. Maher)
- Designer Virus Targets and Kills CRC Cells in Mice (S. Warner)
- Tiny Sensor in Mice May Find Cancer That's Trying to Spread (L. Hao)
- Targeting a Protein “Turned on” by Mistake (N. Gao)
- Spatial Map Intestines (J Hickey)
- CRC Treatment Podcasts
- Keto Molecule & Colorectal Cancer (M Levy)
- Availability of Healthy Food (L Tussing-Humphreys)
- 45 Min/Day of Physical Activity (A Minihan)
- Fewer than 10K Steps/Day (A Patel)
- Yogurt & Cheese & ER- Breast Cancer (M McCullough)
- Stage 2 Clinical Trials for New Endometrial Cancer Drug (V Bae-Jump)
- Hard-to-Starve Pancreatic Cancer Cells (N Kalaany)
- Coffee Risks for Colorectal Cancer (C Um)
- Food Parasite & Brain Cancer Risk (J Hodge)
- Exercise & Quality of Life in Older Survivors (E Rees-Punia)
- 21 Metabolites Linked with Breast Cancer (Y Wang)
- Replacing Sitting May Affect Weight (E Rees-Punia)
- CPS-3 Researchers Ask What People Eat and Check Urine Samples (Y Wang)
- Video Games Motivate Exercise? (E. Lyons)
- Food Choices and Colon Cancer Risk (P. Chandler)
- Race, Exercise & Breast Cancer (C. Dallal)
- Diet with Colorectal Cancer (M. Guinter)
- Biomarkers May Improve Prediction (Y Wang)
- Kickstart NSCLCs Clinical Trials (L. Eichner)
- Mapping Mitochondria's “Dance” (D. Shackleford)
- E-Cig Use Ages 18 to 29 (P. Bandi)
- Stopping Smoking Earlier in Life (F Islami)
- Most with Lung Cancer Smoked (A Jemal)
- Furthering Lung Cancer Screening & Equity (S Fedewa)
- Mouse Lung Organoids for Research (C Kim)
- Quality of Life for Lung Cancer Survivors (J Temel)
- Precision Therapies for NSCLC (P Jänne)
- Cancer Deaths from Smoking (F Islami)
- Lung Cancer Surgery Disparities (A Jemal)
- BRG1-Deficient Lung Cancers (C Kim)
- Yoga for Couples with Lung Cancer (K Milbury)
- Metabolic Differences as New Drug Targets (A Marcus)
- CPS-II & CPS-3 Inform About Risks of Ovarian Cancer
- Machine Learning & Glowing Nanosensors (D Heller)
- Ovarian Cancer May Start in Fallopian Tube Cells (K Lawrenson)
- New Gene Linked with Deadliest Type (C Han)
- Gene-Testing Tools May Personalize Care (A Sood)
- Chromosome-Hoarding Ovarian Cancer Cells & Treatment (J Sheltzer)
- Nanoparticles as Drug Delivery for Metastases (X Lu)
- Turning Off 2 Proteins to Slow HGSC (P Kreeger)
- Targeted Light Therapy in Mice (M Bai)
- Nanoparticles, CAR T, and CRISPR (M Stephan)
- Endometriosis & Ovarian Cancer in Mice (M Wilson)
- Ovarian Cancer Special Section
- UV Exposure, Melanoma, & Dark Skin Types (A. Adamson)
- Melanoma and Lipid Droplets (R. White)
- Zebrafish and Acral Melanoma (R. White)
- T-Cell Lymphoma and PD1 (J. Choi)
- New Drug Destroys Cancer-Causing Protein (C. Crews)
- Virus & Merkel Cell Skin Cancer (R. Wang)
- Non-Genetic Drug Resistance (S. Spencer)
- Hijacking the Body's Sugar (R. Wang)
- Telling about High Risk (P. Kanetsky)
- Brain Metastasis and Alzheimer’s (E. Hernando)
- Exhausted Melanoma "Killer" Cells (W. Cui)
New Gene-Testing Tools May Personalize Ovarian Cancer Care
Researchers say using next-generation sequencing technology as a diagnostic tool may increase precision treatment plans for people with ovarian cancer.
The Challenge
Improvements in genetic testing have allowed for significant advances in the development and use of targeted therapies to treat people with certain types of cancers, including some types of ovarian cancer.
Targeted therapy is a type of cancer treatment that ideally uses drugs or other substances to attack a specific aspect of cancer cells (such as defective proteins due to gene mutations) and kill them while doing little damage to normal cells. This focused action means targeted therapy kills cancer cells more specifically than chemotherapy and radiation do, both of which kill rapidly dividing cells like cancer cells—and normal cells too.
While there are some FDA-approved targeted therapies for ovarian cancer, there remains an urgent need for novel therapies to improve clinical outcomes.
Most ovarian cancers originate from epithelial cells (those that line glands and ducts) called carcinomas, and most epithelial ovarian carcinomas are high-grade serous tumors. These high-grade tumors tend to have the fewest established risk factors and the worst prognosis. They grow and spread faster than lower-grade tumors and cause nearly 90% of ovarian cancer deaths.
High-grade serous ovarian carcinomas have a highly variable genetic makeup. People with the same subtype of ovarian cancer can have different genetic variations, and there can even be genetic variations within the same person. This lack of a consistent target increases the challenge of developing new treatments.
Without targeted therapies, the only available treatments for the most common type of ovarian cancer are the traditional ones—chemotherapy before or after surgery. A large percentage of people with high-grade epithelial ovarian cancers respond well to chemotherapy before surgery; however, the cancer often recurs within a couple of years.
To improve outcomes after treatment and decrease deaths from ovarian cancer, it’s essential to find new treatment plans for people with these genetically varied subtypes. Developing such treatments will require a thorough and nuanced understanding of the genetic differences in ovarian cancer.
The Research
American Cancer Society (ACS) grantee Anil Sood, MD, focuses his research on developing new biologically targeted therapies for ovarian cancer at the University of Texas MD Anderson Cancer Center in Houston.
Sood is a recipient of the ACS Research Professor Award, the most prestigious grant we give to recognize pioneering, influential work, and mentoring that is continuing to change the direction of cancer research.
He’s also co-leader of MD Anderson’s Ovarian Cancer Moon Shot research. These Moon Shot investigators focus on increasing genetic testing rates for women diagnosed with ovarian cancer and developing innovative methods for more personalized surgical care.
Sood recently published a study in Cancer that analyzed how helpful the technique of tumor-based next-generation sequencing (tbNGS) is for people with ovarian cancer. tbNGS enables simultaneous analysis of thousands of genes from tumors at a feasible cost and turnaround time.
Featured Term:
Next-generation Sequencing (NGS)
Technology that allows for simultaneous sequencing of DNA and RNA in multiple people at the same time. Compared to traditional sequencing, which determines the genetic sequence one section at a time, next-generation sequencing is much faster, less expensive, and delivers a much larger magnitude of information. Making sense of these huge datasets requires bioinformatics and computational biology.
NGS has revolutionized the field of personalized medicine (precision medicine).
tbNGS (tumor-based next-generation sequencing) is the use of NGS to evaluate the genetic sequence of tumors from multiple people at the same time.
More and more patients with ovarian cancer are getting tbNGS to identify genetic mutations in their tumors even though the benefits of finding those errors have not been well established. My team aimed to learn if this tool could be more broadly helpful for assessing treatment options for patients with ovarian tumors, particularly high-grade epithelial ovarian carcinomas.”
Anil Sood, MD
University of Texas MD Anderson Cancer Center
ACS Clinical Research Professor
This was a retrospective study, meaning Sood's team collected and analyzed stored data without being able to alter the course of a person’s cancer treatment. The research team examined the results of tbNGS from 409 people diagnosed with high-grade epithelial ovarian carcinoma enrolled in the MD Anderson Ovarian Cancer Moot Shot program between 2013 and 2021. They collected data on multiple types of genetic mutations.
They found that almost 96% of the tumors had a least one genetic mutation, and almost 75% of those tumors had a mutation that was considered “useful for clinical decision-making.” Their findings show what could have been offered to these patients if oncologists knew how to adjust treatment based on cancer’s genetic details—and what might be offered for future patients.
A “useful mutation” qualifies the person with ovarian cancer to receive an existing targeted therapy or enroll in a clinical trial. Specifically, they found that:
- 1 in 4 patients in the study was a potential candidate for an available targeted therapy.
- 3 of 4 patients were potential candidates for a clinical trial of a targeted therapy or biomarker
“Our findings support the clinical relevance of tbNGS in the management of the most common type of ovarian cancer. With it, we discovered many more possible treatment plans for high-grade epithelial ovarian cancers than the standard chemotherapy and surgery that we’ve thought were our only choices," says Sood.
The authors say that they advocate for guideline committees to consider adding the use of tbNGS as an additional diagnostic tool in women with primary or recurrent ovarian cancer.
Why It Matters
The number of sequencing tests Sood’s team had access to provides a detailed description of ovarian cancer genomics at the population level. Sood’s findings show that tbNGS is helpful in identifying genetic mutations in most patients with high-grade epithelial ovarian cancers.
Having information about a patient’s specific genetic mutations and a tumor’s molecular makeup may help oncologists recommend personalized treatments or clinical trials to patients. Such information also helps researchers learn which genetic variations to study as potential new drug targets.
The authors say the information they’ve gathered and that other scientists will gather in the future can help with two key next steps:
- Guide the development of clinical decision-support tools so that oncologists know how to effectively apply the big data from tbNGS into a patient’s treatment plan to improve their outcomes.
- Identify new targets to study for potential new targeted therapies for patients with high-grade epithelial ovarian cancers.