Our 24/7 cancer helpline provides information and answers for people dealing with cancer. We can connect you with trained cancer information specialists who will answer questions about a cancer diagnosis and provide guidance and a compassionate ear.
Chat live online
Select the Live Chat button at the bottom of the page
Our highly trained specialists are available 24/7 via phone and on weekdays can assist through online chat. We connect patients, caregivers, and family members with essential services and resources at every step of their cancer journey. Ask us how you can get involved and support the fight against cancer. Some of the topics we can assist with include:
- Referrals to patient-related programs or resources
- Donations, website, or event-related assistance
- Tobacco-related topics
- Volunteer opportunities
- Cancer Information
For medical questions, we encourage you to review our information with your doctor.
- Triggering Signals of BRCA1 Breast Cancer (K Kessenbrock)
- Testing Diverse Groups Finds New Breast Cancer Genes (L Teras)
- Black Women & Genetic Testing (J Palmer)
- Women 65+ & Genetic Tests for Breast Cancer Risk (L Teras)
- High-Risk Genes and Screening (A Patel)
- New Risk Calculation May Affect Breast Cancer Screening (L Teras)
- Black Men and Breast Cancer (H Sung)
- Platelets May Help Breast Cancer Spread (E Battinelli)
- Natural Killer Cells & TNBC (R. Chakrabarti)
- Improving Chemotherapy (O Sahin)
- Combo Treatment for TNBC (K Varley)
- Treatments Attack Cell Division (A Holland)
- ER+ Treatment in Mice (P Kenny)
- Blood DNA Monitors Metastasis Treatment (H P Ji)
- PTK6 Gene as Treatment Target (H Irie)
- Time-Lapse Cell Movies (S Spencer)
- 3D Mini Breast Tumors May Help ID New Cancer Treatments
- AI Tool Improves Breast Cancer Prognosis Accuracy
- Exercise & Sitting Time (E. Rees-Punia)
- Cancer Risk Factors in LGBTQ Populations (B. Charlton)
- CPS-3 Disparities Studies
- Cancer Disparities in the US (F. Islami)
- Housing Assistance and Mammograms (H Lee)
- Clinical Trial Treatment Cost App (L Hamel)
- Podcasts, TheoryLab
- Patients Health Insurance Tool (M. Politi)
- Breast Cancer Treatment in Ethiopia (A. Jemal)
- Better Survival Requires Better Insurance (J Zhao)
- Medicaid Eligibility Limits (J Zhao)
- New Treatment for Neuroblastoma (A Heczey)
- Oncogenic Fusions AML (S Meshinchi)
- Genetic Risks (L Teras)
- New Medulloblastoma Drugs (J Rodriguez-Blanco)
- Potential New Hope for MLL (J Grembecka)
- Increase in Brain Tumor Diagnosis (K Miller)
- Longer Life Expectancy for Survivors (J Yeh)
- Potential Target for New Osteosarcoma Drugs (C Benavente)
- At-Home Chemo for Children with HR ALL (L Ranney)
- Childhood Cancer Research Landscape Report
- Tumor-Infiltrating Neutrophils (R. Sumagin)
- New Epigenetic Target (K Rai)
- Extra Chromosomes (Aneuploidy) Effect on Cancer (J. Sheltzer)
- Discovery of a New Biomarker Is the First Step to New Treatment (C. Maher)
- Designer Virus Targets and Kills CRC Cells in Mice (S. Warner)
- Tiny Sensor in Mice May Find Cancer That's Trying to Spread (L. Hao)
- Targeting a Protein “Turned on” by Mistake (N. Gao)
- Spatial Map Intestines (J Hickey)
- CRC Treatment Podcasts
- Keto Molecule & Colorectal Cancer (M Levy)
- Availability of Healthy Food (L Tussing-Humphreys)
- 45 Min/Day of Physical Activity (A Minihan)
- Fewer than 10K Steps/Day (A Patel)
- Yogurt & Cheese & ER- Breast Cancer (M McCullough)
- Stage 2 Clinical Trials for New Endometrial Cancer Drug (V Bae-Jump)
- Hard-to-Starve Pancreatic Cancer Cells (N Kalaany)
- Coffee Risks for Colorectal Cancer (C Um)
- Food Parasite & Brain Cancer Risk (J Hodge)
- Exercise & Quality of Life in Older Survivors (E Rees-Punia)
- 21 Metabolites Linked with Breast Cancer (Y Wang)
- Replacing Sitting May Affect Weight (E Rees-Punia)
- CPS-3 Researchers Ask What People Eat and Check Urine Samples (Y Wang)
- Video Games Motivate Exercise? (E. Lyons)
- Food Choices and Colon Cancer Risk (P. Chandler)
- Race, Exercise & Breast Cancer (C. Dallal)
- Diet with Colorectal Cancer (M. Guinter)
- Biomarkers May Improve Prediction (Y Wang)
- Kickstart NSCLCs Clinical Trials (L. Eichner)
- Mapping Mitochondria's “Dance” (D. Shackleford)
- E-Cig Use Ages 18 to 29 (P. Bandi)
- Stopping Smoking Earlier in Life (F Islami)
- Most with Lung Cancer Smoked (A Jemal)
- Furthering Lung Cancer Screening & Equity (S Fedewa)
- Mouse Lung Organoids for Research (C Kim)
- Quality of Life for Lung Cancer Survivors (J Temel)
- Precision Therapies for NSCLC (P Jänne)
- Cancer Deaths from Smoking (F Islami)
- Lung Cancer Surgery Disparities (A Jemal)
- BRG1-Deficient Lung Cancers (C Kim)
- Yoga for Couples with Lung Cancer (K Milbury)
- Metabolic Differences as New Drug Targets (A Marcus)
- CPS-II & CPS-3 Inform About Risks of Ovarian Cancer
- Machine Learning & Glowing Nanosensors (D Heller)
- Ovarian Cancer May Start in Fallopian Tube Cells (K Lawrenson)
- New Gene Linked with Deadliest Type (C Han)
- Gene-Testing Tools May Personalize Care (A Sood)
- Chromosome-Hoarding Ovarian Cancer Cells & Treatment (J Sheltzer)
- Nanoparticles as Drug Delivery for Metastases (X Lu)
- Turning Off 2 Proteins to Slow HGSC (P Kreeger)
- Targeted Light Therapy in Mice (M Bai)
- Nanoparticles, CAR T, and CRISPR (M Stephan)
- Endometriosis & Ovarian Cancer in Mice (M Wilson)
- Ovarian Cancer Special Section
- UV Exposure, Melanoma, & Dark Skin Types (A. Adamson)
- Melanoma and Lipid Droplets (R. White)
- Zebrafish and Acral Melanoma (R. White)
- T-Cell Lymphoma and PD1 (J. Choi)
- New Drug Destroys Cancer-Causing Protein (C. Crews)
- Virus & Merkel Cell Skin Cancer (R. Wang)
- Non-Genetic Drug Resistance (S. Spencer)
- Hijacking the Body's Sugar (R. Wang)
- Telling about High Risk (P. Kanetsky)
- Brain Metastasis and Alzheimer’s (E. Hernando)
- Exhausted Melanoma "Killer" Cells (W. Cui)
Researchers Ask What People Eat—and Check Urine Samples
CPS-3 researchers evaluated diet assessments and blood and urine samples to identify 100s of metabolites linked to what people frequently eat and drink.
The Challenge
Many scientific studies use questionnaires or interviews to gather information from people about what they usually eat and drink, how often, and in what amounts. These self-reported methods are only as reliable as a person’s memory, and regardless of a study participant’s diligence and intentions, their accuracy is questionable. Likely errors in data about a person’s eating habits makes it harder to study the role of diet in cancer prevention and survival.
To overcome these problems, nutritional epidemiologists examine dietary biomarkers found in blood or urine to measure the biological effects of specific dietary components and to identify foods that influence the risk for certain metabolic diseases, like obesity.
Dietary biomarkers have great potential because they are objective and not subject to the types of errors with self-reported diet, such as relying on memory. New, robust laboratory methods allow for the investigation of biological markers of foods, beverages, and other dietary components. Dietary biomarkers include natural food constituents, like vitamins and flavonoids (nutrients in plants), food additives, as well as food contaminants. Small molecules derived from food components are called food metabolites.
Nutritional epidemiologic studies have significantly advanced the understanding of the relationships between diet and chronic diseases and have led to dietary guidelines for disease prevention in recent decades. However, the field has been limited by inconsistent findings from many studies. Confirmed, validated dietary biomarkers do not exist for most foods and dietary patterns.
The Research
Ying Wang, PhD, along with colleagues from the American Cancer Society (ACS) and Emory University, use a high-throughput technology called metabolomics to measure thousands of small molecules in blood and urine and other body tissues—to identify metabolites related to the food eaten.
Measuring a person's diet is super hard because we eat such a large variety of foods every day. In the past, when researchers for large human studies wanted to analyze the effect of diet on disease, they relied on participants to answer surveys about what they ate. Such self-reported dietary data, however, may be biased because our memory is inaccurate, and we have a tendency to report 'what I should eat' vs. 'what I actually ate.'
Ying Wang, PhD
Senior Principal Scientist, Epidemiology Research
Population Science, American Cancer Society
In comparison, Wang says, “Dietary biomarkers found in the blood and urine are considered objective measures of diet."
The problem with reliable dietary biomarkers, though, she explains, is that they are sparse and most are nutrient-based, not food-based.
"Our study used metabolomics technology, which measures thousands of small molecules in blood and urine, to identify new food-based biomarkers for a large group of men and women.”
They used responses to questionnaires and biospecimens from almost 700 men and women in the Cancer Prevention Study-3, Diet Assessment Substudy to identify hundreds of metabolites that are related to what people frequently eat and drink, such as with oranges, broccoli, whole grains, fish, coffee, and tea.
They also used repeated measurements from blood and urine samples, collected about 6 months apart, to assess the reproducibility of the biomarkers.
They compared:
- 101 food groups/items by a food frequency questionnaire
- 105 food groups/items by repeated 24-hr diet recalls
- 1,391 metabolites measured in 2 different 24-hour urine samples (urine collected in a special container for a full day, 24 hours)
They identified 513 unique metabolites correlated with 79 food groups/items. Many of these replicated metabolites found in earlier studies, adding a step towards their validity. They published their results in the journal Metabolites.
Why It Matters
Objective dietary biomarkers help validate, or add to, self-reported dietary questionnaires and are important in diet assessment in large population studies to move the field forward. Wang’s findings about identified food-related metabolic biomarkers contribute to the evidence from limited studies and will need to be confirmed and evaluated in future studies.
Identifying and learning more about dietary biomarkers may help researchers and health care professionals:
- Shed light on physiological or pathological responses people have to certain food behaviors.
- Help predict the risk for certain diseases.
- Improve screening and diagnosis.
- Monitor the progression of a disease and its responses to treatment.
- Have information on the kinds of individual differences people have in response to diet.
In the future, knowledge about dietary biomarkers may help researchers and other experts develop personalized dietary recommendations, also called precision nutrition.