Our 24/7 cancer helpline provides information and answers for people dealing with cancer. We can connect you with trained cancer information specialists who will answer questions about a cancer diagnosis and provide guidance and a compassionate ear.
Chat live online
Select the Live Chat button at the bottom of the page
Our highly trained specialists are available 24/7 via phone and on weekdays can assist through online chat. We connect patients, caregivers, and family members with essential services and resources at every step of their cancer journey. Ask us how you can get involved and support the fight against cancer. Some of the topics we can assist with include:
- Referrals to patient-related programs or resources
- Donations, website, or event-related assistance
- Tobacco-related topics
- Volunteer opportunities
- Cancer Information
For medical questions, we encourage you to review our information with your doctor.
- Triggering Signals of BRCA1 Breast Cancer (K Kessenbrock)
- Testing Diverse Groups Finds New Breast Cancer Genes (L Teras)
- Black Women & Genetic Testing (J Palmer)
- Women 65+ & Genetic Tests for Breast Cancer Risk (L Teras)
- High-Risk Genes and Screening (A Patel)
- New Risk Calculation May Affect Breast Cancer Screening (L Teras)
- Black Men and Breast Cancer (H Sung)
- Platelets May Help Breast Cancer Spread (E Battinelli)
- Natural Killer Cells & TNBC (R. Chakrabarti)
- Improving Chemotherapy (O Sahin)
- Combo Treatment for TNBC (K Varley)
- Treatments Attack Cell Division (A Holland)
- ER+ Treatment in Mice (P Kenny)
- Blood DNA Monitors Metastasis Treatment (H P Ji)
- PTK6 Gene as Treatment Target (H Irie)
- Time-Lapse Cell Movies (S Spencer)
- 3D Mini Breast Tumors May Help ID New Cancer Treatments
- AI Tool Improves Breast Cancer Prognosis Accuracy
- Exercise & Sitting Time (E. Rees-Punia)
- Cancer Risk Factors in LGBTQ Populations (B. Charlton)
- CPS-3 Disparities Studies
- Cancer Disparities in the US (F. Islami)
- Housing Assistance and Mammograms (H Lee)
- Clinical Trial Treatment Cost App (L Hamel)
- Podcasts, TheoryLab
- Patients Health Insurance Tool (M. Politi)
- Breast Cancer Treatment in Ethiopia (A. Jemal)
- Better Survival Requires Better Insurance (J Zhao)
- Medicaid Eligibility Limits (J Zhao)
- New Treatment for Neuroblastoma (A Heczey)
- Oncogenic Fusions AML (S Meshinchi)
- Genetic Risks (L Teras)
- New Medulloblastoma Drugs (J Rodriguez-Blanco)
- Potential New Hope for MLL (J Grembecka)
- Increase in Brain Tumor Diagnosis (K Miller)
- Longer Life Expectancy for Survivors (J Yeh)
- Potential Target for New Osteosarcoma Drugs (C Benavente)
- At-Home Chemo for Children with HR ALL (L Ranney)
- Childhood Cancer Research Landscape Report
- Tumor-Infiltrating Neutrophils (R. Sumagin)
- New Epigenetic Target (K Rai)
- Extra Chromosomes (Aneuploidy) Effect on Cancer (J. Sheltzer)
- Discovery of a New Biomarker Is the First Step to New Treatment (C. Maher)
- Designer Virus Targets and Kills CRC Cells in Mice (S. Warner)
- Tiny Sensor in Mice May Find Cancer That's Trying to Spread (L. Hao)
- Targeting a Protein “Turned on” by Mistake (N. Gao)
- Spatial Map Intestines (J Hickey)
- CRC Treatment Podcasts
- Keto Molecule & Colorectal Cancer (M Levy)
- Availability of Healthy Food (L Tussing-Humphreys)
- 45 Min/Day of Physical Activity (A Minihan)
- Fewer than 10K Steps/Day (A Patel)
- Yogurt & Cheese & ER- Breast Cancer (M McCullough)
- Stage 2 Clinical Trials for New Endometrial Cancer Drug (V Bae-Jump)
- Hard-to-Starve Pancreatic Cancer Cells (N Kalaany)
- Coffee Risks for Colorectal Cancer (C Um)
- Food Parasite & Brain Cancer Risk (J Hodge)
- Exercise & Quality of Life in Older Survivors (E Rees-Punia)
- 21 Metabolites Linked with Breast Cancer (Y Wang)
- Replacing Sitting May Affect Weight (E Rees-Punia)
- CPS-3 Researchers Ask What People Eat and Check Urine Samples (Y Wang)
- Video Games Motivate Exercise? (E. Lyons)
- Food Choices and Colon Cancer Risk (P. Chandler)
- Race, Exercise & Breast Cancer (C. Dallal)
- Diet with Colorectal Cancer (M. Guinter)
- Biomarkers May Improve Prediction (Y Wang)
- Kickstart NSCLCs Clinical Trials (L. Eichner)
- Mapping Mitochondria's “Dance” (D. Shackleford)
- E-Cig Use Ages 18 to 29 (P. Bandi)
- Stopping Smoking Earlier in Life (F Islami)
- Most with Lung Cancer Smoked (A Jemal)
- Furthering Lung Cancer Screening & Equity (S Fedewa)
- Mouse Lung Organoids for Research (C Kim)
- Quality of Life for Lung Cancer Survivors (J Temel)
- Precision Therapies for NSCLC (P Jänne)
- Cancer Deaths from Smoking (F Islami)
- Lung Cancer Surgery Disparities (A Jemal)
- BRG1-Deficient Lung Cancers (C Kim)
- Yoga for Couples with Lung Cancer (K Milbury)
- Metabolic Differences as New Drug Targets (A Marcus)
- CPS-II & CPS-3 Inform About Risks of Ovarian Cancer
- Machine Learning & Glowing Nanosensors (D Heller)
- Ovarian Cancer May Start in Fallopian Tube Cells (K Lawrenson)
- New Gene Linked with Deadliest Type (C Han)
- Gene-Testing Tools May Personalize Care (A Sood)
- Chromosome-Hoarding Ovarian Cancer Cells & Treatment (J Sheltzer)
- Nanoparticles as Drug Delivery for Metastases (X Lu)
- Turning Off 2 Proteins to Slow HGSC (P Kreeger)
- Targeted Light Therapy in Mice (M Bai)
- Nanoparticles, CAR T, and CRISPR (M Stephan)
- Endometriosis & Ovarian Cancer in Mice (M Wilson)
- Ovarian Cancer Special Section
- UV Exposure, Melanoma, & Dark Skin Types (A. Adamson)
- Melanoma and Lipid Droplets (R. White)
- Zebrafish and Acral Melanoma (R. White)
- T-Cell Lymphoma and PD1 (J. Choi)
- New Drug Destroys Cancer-Causing Protein (C. Crews)
- Virus & Merkel Cell Skin Cancer (R. Wang)
- Non-Genetic Drug Resistance (S. Spencer)
- Hijacking the Body's Sugar (R. Wang)
- Telling about High Risk (P. Kanetsky)
- Brain Metastasis and Alzheimer’s (E. Hernando)
- Exhausted Melanoma "Killer" Cells (W. Cui)
Improving Precision Therapies for Non-Small Cell Lung Cancer
Promising results from mice studies testing a drug on lung cancers that previously had not responded to treatment led to phase 1 clinical trials in people.
The Challenge
The epidermal growth factor receptor (EGFR) gene provides instructions for making a protein with the same name. Several mutations in the EGFR gene have been associated with certain types of cancer, including lung cancer. The gene is mutated in about 15 to 20% of non-small cell lung cancers (NSCLC), and specifically in a form of NSCLC called adenocarcinoma. These mutations are most common in people with lung cancer who have never smoked.
The gene changes result in an EGFR protein that is always “turned on,” allowing it to constantly receive signals to grow and survive and leading to the formation of a tumor.
Lung cancers with EGFR gene mutations usually respond to drugs that specifically target and inhibit the EGFR protein, causing the tumor to shrink and improving survival. Osimertinib (Tagrisso) is the preferred first line EGFR inhibitor of choice for the most common EGFR-mutant cancers. The problem is that sooner or later these drugs stop working.
The Research
American Cancer Society Clinical Research Professor, Pasi A. Jänne, MD, PhD, was one of the co-discoverers of EGFR mutations and has led the development of therapeutic strategies for patients with EGFR- mutant lung cancer. He and his team at the Dana-Farber Cancer Institute in Boston tested a new treatment strategy for NSCLC in mice, hoping it would have longer-lasting anti-tumor effects.
Their hypothesis was that targeting the human epidermal growth factor receptor 3 (HER3) protein might improve the effectiveness of EGFR inhibitor drugs.
Lung cancers that harbor EGFR gene mutations are treated with EGFR inhibitors, including the drug osimertinib, but they inevitably develop drug resistance.
"As such, there is a need to develop new therapies to combat drug resistance. In this study, we evaluated an HER3 antibody drug conjugate (called HER3-DXd) as a treatment approach for drug-resistant cancers," Jänne says.
We observed that HER3-DXd is effective in EGFR-inhibitor drug-resistant models. We further note, that osimertinib treatment increases the membrane expression of HER3, resulting in enhanced internalization of HER3-DXd and increased efficacy in vitro and in vivo. Our findings suggest that the combination of osimertinib and HER3-DXd may be an effective combination treatment strategy for EGFR-mutant cancers.”
Pasi Jänne, MD, PhD
Dana-Farber Cancer Institute in Boston
ACS Clinical Research Professor
Jänne's team evaluated an antibody drug conjugate (called HER3-DXd), which is an antibody directed at HER3 (commonly expressed in EGFR-mutant cancers) linked to a chemotherapeutic agent (topoisomerase I inhibitor). In addition to its evaluation for EGFR mutant NSCLCs, this drug is currently being evaluated for HER3 positive metastatic breast cancer and metastatic colorectal cancer.
The team transplanted patient-derived lung cancer specimens into mice to test the anti-tumor effects of HER3-DXd, including lung cancers that had previously developed treatment resistance.
They found that HER3-DXd was well tolerated by mice. The reduced size of the transplanted lung cancers in mice positively correlated with the dose of the drug, and the team observed anti-tumor effects even for NSCLCs that previously had developed drug resistance. But the results were variable, prompting the team to their next strategy—testing a combination treatment.
The team subsequently discovered that treating EGFR-mutant cancers with osimertinib, results in an increase in the total HER3 protein on the cell surface. This increase enhances the efficacy of HER3-DXd both in cells in culture and in mouse models.
Why It Matters
These promising preclinical data have led to the initiation of a Phase I clinical trial – a study done in humans – combining osimertinib with HER3-DXd. The study involves advanced NSCLC patients previously treated with osimertinib and those who haven’t been treated with an EGFR inhibitor.