Our 24/7 cancer helpline provides information and answers for people dealing with cancer. We can connect you with trained cancer information specialists who will answer questions about a cancer diagnosis and provide guidance and a compassionate ear.
Chat live online
Select the Live Chat button at the bottom of the page
Our highly trained specialists are available 24/7 via phone and on weekdays can assist through online chat. We connect patients, caregivers, and family members with essential services and resources at every step of their cancer journey. Ask us how you can get involved and support the fight against cancer. Some of the topics we can assist with include:
- Referrals to patient-related programs or resources
- Donations, website, or event-related assistance
- Tobacco-related topics
- Volunteer opportunities
- Cancer Information
For medical questions, we encourage you to review our information with your doctor.
- Triggering Signals of BRCA1 Breast Cancer (K Kessenbrock)
- Testing Diverse Groups Finds New Breast Cancer Genes (L Teras)
- Black Women & Genetic Testing (J Palmer)
- Women 65+ & Genetic Tests for Breast Cancer Risk (L Teras)
- High-Risk Genes and Screening (A Patel)
- New Risk Calculation May Affect Breast Cancer Screening (L Teras)
- Black Men and Breast Cancer (H Sung)
- Platelets May Help Breast Cancer Spread (E Battinelli)
- Natural Killer Cells & TNBC (R. Chakrabarti)
- Improving Chemotherapy (O Sahin)
- Combo Treatment for TNBC (K Varley)
- Treatments Attack Cell Division (A Holland)
- ER+ Treatment in Mice (P Kenny)
- Blood DNA Monitors Metastasis Treatment (H P Ji)
- PTK6 Gene as Treatment Target (H Irie)
- Time-Lapse Cell Movies (S Spencer)
- 3D Mini Breast Tumors May Help ID New Cancer Treatments
- AI Tool Improves Breast Cancer Prognosis Accuracy
- Exercise & Sitting Time (E. Rees-Punia)
- Cancer Risk Factors in LGBTQ Populations (B. Charlton)
- CPS-3 Disparities Studies
- Cancer Disparities in the US (F. Islami)
- Housing Assistance and Mammograms (H Lee)
- Clinical Trial Treatment Cost App (L Hamel)
- Podcasts, TheoryLab
- Patients Health Insurance Tool (M. Politi)
- Breast Cancer Treatment in Ethiopia (A. Jemal)
- Better Survival Requires Better Insurance (J Zhao)
- Medicaid Eligibility Limits (J Zhao)
- New Treatment for Neuroblastoma (A Heczey)
- Oncogenic Fusions AML (S Meshinchi)
- Genetic Risks (L Teras)
- New Medulloblastoma Drugs (J Rodriguez-Blanco)
- Potential New Hope for MLL (J Grembecka)
- Increase in Brain Tumor Diagnosis (K Miller)
- Longer Life Expectancy for Survivors (J Yeh)
- Potential Target for New Osteosarcoma Drugs (C Benavente)
- At-Home Chemo for Children with HR ALL (L Ranney)
- Childhood Cancer Research Landscape Report
- Tumor-Infiltrating Neutrophils (R. Sumagin)
- New Epigenetic Target (K Rai)
- Extra Chromosomes (Aneuploidy) Effect on Cancer (J. Sheltzer)
- Discovery of a New Biomarker Is the First Step to New Treatment (C. Maher)
- Designer Virus Targets and Kills CRC Cells in Mice (S. Warner)
- Tiny Sensor in Mice May Find Cancer That's Trying to Spread (L. Hao)
- Targeting a Protein “Turned on” by Mistake (N. Gao)
- Spatial Map Intestines (J Hickey)
- CRC Treatment Podcasts
- Keto Molecule & Colorectal Cancer (M Levy)
- Availability of Healthy Food (L Tussing-Humphreys)
- 45 Min/Day of Physical Activity (A Minihan)
- Fewer than 10K Steps/Day (A Patel)
- Yogurt & Cheese & ER- Breast Cancer (M McCullough)
- Stage 2 Clinical Trials for New Endometrial Cancer Drug (V Bae-Jump)
- Hard-to-Starve Pancreatic Cancer Cells (N Kalaany)
- Coffee Risks for Colorectal Cancer (C Um)
- Food Parasite & Brain Cancer Risk (J Hodge)
- Exercise & Quality of Life in Older Survivors (E Rees-Punia)
- 21 Metabolites Linked with Breast Cancer (Y Wang)
- Replacing Sitting May Affect Weight (E Rees-Punia)
- CPS-3 Researchers Ask What People Eat and Check Urine Samples (Y Wang)
- Video Games Motivate Exercise? (E. Lyons)
- Food Choices and Colon Cancer Risk (P. Chandler)
- Race, Exercise & Breast Cancer (C. Dallal)
- Diet with Colorectal Cancer (M. Guinter)
- Biomarkers May Improve Prediction (Y Wang)
- Kickstart NSCLCs Clinical Trials (L. Eichner)
- Mapping Mitochondria's “Dance” (D. Shackleford)
- E-Cig Use Ages 18 to 29 (P. Bandi)
- Stopping Smoking Earlier in Life (F Islami)
- Most with Lung Cancer Smoked (A Jemal)
- Furthering Lung Cancer Screening & Equity (S Fedewa)
- Mouse Lung Organoids for Research (C Kim)
- Quality of Life for Lung Cancer Survivors (J Temel)
- Precision Therapies for NSCLC (P Jänne)
- Cancer Deaths from Smoking (F Islami)
- Lung Cancer Surgery Disparities (A Jemal)
- BRG1-Deficient Lung Cancers (C Kim)
- Yoga for Couples with Lung Cancer (K Milbury)
- Metabolic Differences as New Drug Targets (A Marcus)
- CPS-II & CPS-3 Inform About Risks of Ovarian Cancer
- Machine Learning & Glowing Nanosensors (D Heller)
- Ovarian Cancer May Start in Fallopian Tube Cells (K Lawrenson)
- New Gene Linked with Deadliest Type (C Han)
- Gene-Testing Tools May Personalize Care (A Sood)
- Chromosome-Hoarding Ovarian Cancer Cells & Treatment (J Sheltzer)
- Nanoparticles as Drug Delivery for Metastases (X Lu)
- Turning Off 2 Proteins to Slow HGSC (P Kreeger)
- Targeted Light Therapy in Mice (M Bai)
- Nanoparticles, CAR T, and CRISPR (M Stephan)
- Endometriosis & Ovarian Cancer in Mice (M Wilson)
- Ovarian Cancer Special Section
- UV Exposure, Melanoma, & Dark Skin Types (A. Adamson)
- Melanoma and Lipid Droplets (R. White)
- Zebrafish and Acral Melanoma (R. White)
- T-Cell Lymphoma and PD1 (J. Choi)
- New Drug Destroys Cancer-Causing Protein (C. Crews)
- Virus & Merkel Cell Skin Cancer (R. Wang)
- Non-Genetic Drug Resistance (S. Spencer)
- Hijacking the Body's Sugar (R. Wang)
- Telling about High Risk (P. Kanetsky)
- Brain Metastasis and Alzheimer’s (E. Hernando)
- Exhausted Melanoma "Killer" Cells (W. Cui)
Blood Cells That Clot Wounds May Help Breast Cancer Spread
Mouse studies reveal a feedback loop: Platelets help breast cancer start, then cancer leads to platelets that support metastasis.
The Challenge
The tiny blood cells that help the body heal wounds, called platelets, float along in the bloodstream until they are activated by a bleeding wound or injury. Then, they multiply, go to the place that’s bleeding, adhere to other platelets and damaged blood vessels, and release proteins to form blood clots that “plug” the damaged part of a blood vessel.
But, if platelets are “inappropriately” activated, they may contribute to the growth and spread of cancer through the process of metastasis. Researchers have already discovered a lot about the relationship between platelets and tumors. For instance, an abnormally high platelet count may:
- Increase the risk of developing certain cancers, including colon, lung, ovarian, and stomach.
- Be a sign of an undetected cancer.
- Indicate that cancer is more likely to spread to other parts of the body if the count is high at the time of diagnosis.
- Reduce the chance of surviving cancer.
Platelets may be involved in many processes of tumor development. For instance, they may help tumor cells survive and reproduce, escape detection by the immune system, and penetrate capillaries (or help new ones grow) to spread through the bloodstream and set up a new tumor far from the original one (distant metastases).
Featured Term:
Platelets
Also known as thrombocytes, platelets are small blood cells with the primary role of preventing or stopping bleeding in the body. Platelets have also been found to have a role in the development and spread of certain types of cancer.
Until now, though, research hasn’t focused as much on the opposite relationship—how cancerous tumors affect platelets. A few studies have looked at the interactions between some types of cancer and platelets. But little has been discovered about how breast cancer affects the production of platelets, specifically how it affects the largest cells in bone marrow—megakaryocytes—that make platelets.
The Research
In her lab, American Cancer Society (ACS)-funded researcher Elisabeth Battinelli, MD, PhD, studies the connection between platelets and the spread of cancer. In a study recently published in Science Advances, she and colleagues examined mice with breast cancer to better understand why and how cancer affects the growth and activity of platelets.
The team found that the mice with breast cancer in their lab did not have an increased number of platelets (like women with breast cancer do). However, the platelets the mice had were very large. The researchers also found evidence suggesting that these platelets were not normal. In fact, they looked similar to the platelets sometimes seen in people with cancer.
Our study is the first to show how the presence of breast cancer leads to changes in megakaryocytes, the cellular factories in the bone marrow that manufacture platelets. The altered megakaryocytes produce platelets with changes in quality that may make it easier for cancer to spread.”
Battinelli and her team discovered that cancer cells send out signals that have a direct effect on megakaryocytes in the bone marrow, changing how these cells look and behave. Specifically, the megakaryocytes:
- Are smaller and fewer in number
- Have abnormal numbers of chromosomes
- Make more pro-inflammatory proteins, which are associated with the progression of tumors
Platelets made by these altered megakaryocytes also had higher levels of pro-inflammatory proteins. This not only suggests that the megakaryocytes passed on the tumor-induced changes to platelets they produced, but also that those changes contribute to platelets’ support of metastasis.
Why It Matters
This study reports for the first time that breast cancer alters megakaryocytes and shows how cancer-associated changes in these platelet precursors promote metastasis.
The investigators expect that by learning more about how cancer cells and other cells send signals to each other, they can find ways to disrupt the cancer-promoting crosstalk.
These discoveries could lead to new biomarkers to guide precision oncology care and improve treatments for breast cancer.
The study authors conclude, “Despite the findings presented in this study, it remains largely undetermined which tumor-derived factors affect megakaryopoiesis (the maturation of megakaryocytes so that they produce platelets) during breast cancer progression.” Future studies, they say, should determine whether cancer directly affects megakaryocytes via signals sent from the tumor or by increasing inflammatory responses.