Our 24/7 cancer helpline provides information and answers for people dealing with cancer. We can connect you with trained cancer information specialists who will answer questions about a cancer diagnosis and provide guidance and a compassionate ear.
Chat live online
Select the Live Chat button at the bottom of the page
Our highly trained specialists are available 24/7 via phone and on weekdays can assist through online chat. We connect patients, caregivers, and family members with essential services and resources at every step of their cancer journey. Ask us how you can get involved and support the fight against cancer. Some of the topics we can assist with include:
- Referrals to patient-related programs or resources
- Donations, website, or event-related assistance
- Tobacco-related topics
- Volunteer opportunities
- Cancer Information
For medical questions, we encourage you to review our information with your doctor.
- Triggering Signals of BRCA1 Breast Cancer (K Kessenbrock)
- Testing Diverse Groups Finds New Breast Cancer Genes (L Teras)
- Black Women & Genetic Testing (J Palmer)
- Women 65+ & Genetic Tests for Breast Cancer Risk (L Teras)
- High-Risk Genes and Screening (A Patel)
- New Risk Calculation May Affect Breast Cancer Screening (L Teras)
- Black Men and Breast Cancer (H Sung)
- Platelets May Help Breast Cancer Spread (E Battinelli)
- Natural Killer Cells & TNBC (R. Chakrabarti)
- Improving Chemotherapy (O Sahin)
- Combo Treatment for TNBC (K Varley)
- Treatments Attack Cell Division (A Holland)
- ER+ Treatment in Mice (P Kenny)
- Blood DNA Monitors Metastasis Treatment (H P Ji)
- PTK6 Gene as Treatment Target (H Irie)
- Time-Lapse Cell Movies (S Spencer)
- 3D Mini Breast Tumors May Help ID New Cancer Treatments
- AI Tool Improves Breast Cancer Prognosis Accuracy
- Exercise & Sitting Time (E. Rees-Punia)
- Cancer Risk Factors in LGBTQ Populations (B. Charlton)
- CPS-3 Disparities Studies
- Cancer Disparities in the US (F. Islami)
- Housing Assistance and Mammograms (H Lee)
- Clinical Trial Treatment Cost App (L Hamel)
- Podcasts, TheoryLab
- Patients Health Insurance Tool (M. Politi)
- Breast Cancer Treatment in Ethiopia (A. Jemal)
- Better Survival Requires Better Insurance (J Zhao)
- Medicaid Eligibility Limits (J Zhao)
- New Treatment for Neuroblastoma (A Heczey)
- Oncogenic Fusions AML (S Meshinchi)
- Genetic Risks (L Teras)
- New Medulloblastoma Drugs (J Rodriguez-Blanco)
- Potential New Hope for MLL (J Grembecka)
- Increase in Brain Tumor Diagnosis (K Miller)
- Longer Life Expectancy for Survivors (J Yeh)
- Potential Target for New Osteosarcoma Drugs (C Benavente)
- At-Home Chemo for Children with HR ALL (L Ranney)
- Childhood Cancer Research Landscape Report
- Tumor-Infiltrating Neutrophils (R. Sumagin)
- New Epigenetic Target (K Rai)
- Extra Chromosomes (Aneuploidy) Effect on Cancer (J. Sheltzer)
- Discovery of a New Biomarker Is the First Step to New Treatment (C. Maher)
- Designer Virus Targets and Kills CRC Cells in Mice (S. Warner)
- Tiny Sensor in Mice May Find Cancer That's Trying to Spread (L. Hao)
- Targeting a Protein “Turned on” by Mistake (N. Gao)
- Spatial Map Intestines (J Hickey)
- CRC Treatment Podcasts
- Keto Molecule & Colorectal Cancer (M Levy)
- Availability of Healthy Food (L Tussing-Humphreys)
- 45 Min/Day of Physical Activity (A Minihan)
- Fewer than 10K Steps/Day (A Patel)
- Yogurt & Cheese & ER- Breast Cancer (M McCullough)
- Stage 2 Clinical Trials for New Endometrial Cancer Drug (V Bae-Jump)
- Hard-to-Starve Pancreatic Cancer Cells (N Kalaany)
- Coffee Risks for Colorectal Cancer (C Um)
- Food Parasite & Brain Cancer Risk (J Hodge)
- Exercise & Quality of Life in Older Survivors (E Rees-Punia)
- 21 Metabolites Linked with Breast Cancer (Y Wang)
- Replacing Sitting May Affect Weight (E Rees-Punia)
- CPS-3 Researchers Ask What People Eat and Check Urine Samples (Y Wang)
- Video Games Motivate Exercise? (E. Lyons)
- Food Choices and Colon Cancer Risk (P. Chandler)
- Race, Exercise & Breast Cancer (C. Dallal)
- Diet with Colorectal Cancer (M. Guinter)
- Biomarkers May Improve Prediction (Y Wang)
- Kickstart NSCLCs Clinical Trials (L. Eichner)
- Mapping Mitochondria's “Dance” (D. Shackleford)
- E-Cig Use Ages 18 to 29 (P. Bandi)
- Stopping Smoking Earlier in Life (F Islami)
- Most with Lung Cancer Smoked (A Jemal)
- Furthering Lung Cancer Screening & Equity (S Fedewa)
- Mouse Lung Organoids for Research (C Kim)
- Quality of Life for Lung Cancer Survivors (J Temel)
- Precision Therapies for NSCLC (P Jänne)
- Cancer Deaths from Smoking (F Islami)
- Lung Cancer Surgery Disparities (A Jemal)
- BRG1-Deficient Lung Cancers (C Kim)
- Yoga for Couples with Lung Cancer (K Milbury)
- Metabolic Differences as New Drug Targets (A Marcus)
- CPS-II & CPS-3 Inform About Risks of Ovarian Cancer
- Machine Learning & Glowing Nanosensors (D Heller)
- Ovarian Cancer May Start in Fallopian Tube Cells (K Lawrenson)
- New Gene Linked with Deadliest Type (C Han)
- Gene-Testing Tools May Personalize Care (A Sood)
- Chromosome-Hoarding Ovarian Cancer Cells & Treatment (J Sheltzer)
- Nanoparticles as Drug Delivery for Metastases (X Lu)
- Turning Off 2 Proteins to Slow HGSC (P Kreeger)
- Targeted Light Therapy in Mice (M Bai)
- Nanoparticles, CAR T, and CRISPR (M Stephan)
- Endometriosis & Ovarian Cancer in Mice (M Wilson)
- Ovarian Cancer Special Section
- UV Exposure, Melanoma, & Dark Skin Types (A. Adamson)
- Melanoma and Lipid Droplets (R. White)
- Zebrafish and Acral Melanoma (R. White)
- T-Cell Lymphoma and PD1 (J. Choi)
- New Drug Destroys Cancer-Causing Protein (C. Crews)
- Virus & Merkel Cell Skin Cancer (R. Wang)
- Non-Genetic Drug Resistance (S. Spencer)
- Hijacking the Body's Sugar (R. Wang)
- Telling about High Risk (P. Kanetsky)
- Brain Metastasis and Alzheimer’s (E. Hernando)
- Exhausted Melanoma "Killer" Cells (W. Cui)
3D Mini Breast Tumors May Help ID New Cancer Treatments
Researchers grew 3D organoid cultures from mice injected with human tumor cells and tested both with existing and new drugs for hard-to-treat breast cancers.
The Challenge
Mutation testing is becoming mainstream to personalized cancer treatment, but for the vast variations of breast cancer, it is challenging to identify treatments based on genetic mutations alone.
More and more studies suggest that functional testing may have distinct advantages over mutation testing alone to personalize treatment. Functional precision medicine is a strategy where live tumor cells from a patient are directly tested with a drug to provide immediate information that can inform personalized treatment.
One way scientists try to test drugs on patient's breast tumors is to implant human tumor biopsies into the mouse mammary gland. These mice are called human patient-derived xenografts, or PDX models. Scientists can use PDXs to see how they respond to treatments, and the mice's responses are a good model of how people will respond. PDXs can also show scientists how tumors grow and spread. Hundreds of PDX mouse models have been developed for breast cancer. However, the generation and maintenance of PDX mouse models is slow and expensive, which makes it difficult to test a large number of drugs and doses on each patient tumor to find the optimal treatment.
Scientists need to develop models of breast cancer that represent the complexity of human tumors and are easier to grow for drug screening to find effective treatments for each type of breast cancer.
The Research
American Cancer Society (ACS) grantee Katherine Varley, PhD, co-wrote a published study in Nature Cancer with lead investigator Alana Welm, PhD, about their development of mouse and organoid models to test breast cancer drugs.
This collaborative study implanted tumor specimens from patients into mice to create PDX models, and then they use samples from those mice to create PDX-derived organoids, or PDxO models, that could be grown in a dish.
The ability to grow patient tumor cells in a dish allows us to accelerate personalized medicine. We can now test a large number of drugs on diverse tumors from people with breast cancer and use genomic analysis to learn which differences in gene expression between patients’ tumors are associated with the response to each drug.”
Katherine Varley, PhD
Huntsman Cancer Institute, University of Utah
American Cancer Society Research Grantee
When they tested potential drugs, they found that organoids grown in a dish (in vitro) had similar results as the live PDX mice with human cancers (in vivo). They were able to uncover both experimental and FDA-approved drugs that worked very well to kill the cancer cells in the PDxO organoid in the lab (an example of in vitro testing) and verify their findings with the PDX live mouse with the human cancer (an example of in vivo testing). They also used genomic analysis to demonstrate that the different mutations and gene expression signatures found in each patient tumor were preserved when the tumors were grown in mice (PDX) and in a dish (PDxO).
They extended their work to personalize treatment for a patient with a recurrence of triple-negative breast cancer. The treatment selected based on the PDxO drug testing of the patient's tumor resulted in a complete response (no signs of cancer) and the patient had a period of progression-free survival that was 3 times longer than people who'd received other treatments.
These findings demonstrate that PDxO models can be used to accelerate the testing of a large number of drugs on patient tumors to prioritize more effective treatments. Additionally, the genomic analysis of these diverse PDxO models will allow researchers to identify gene expression differences between patients that are associated with response to different drugs. In the future, the research team hopes to use expression of the patient's tumor.
Why It Matters
Varley's collaborative research results are an example of functional precision medicine—a pre-clinical research platform where scientists take live tumor cells from patients to identify new drugs for breast cancer, including the identification of biomarkers to personalize the use of these drugs. These new functional tools can also be used to accelerate the discovery of new drugs against tough-to-treat breast cancers and identify patient tumors that are most likely to respond to each treatment option.