Our 24/7 cancer helpline provides information and answers for people dealing with cancer. We can connect you with trained cancer information specialists who will answer questions about a cancer diagnosis and provide guidance and a compassionate ear.
Chat live online
Select the Live Chat button at the bottom of the page
Our highly trained specialists are available 24/7 via phone and on weekdays can assist through online chat. We connect patients, caregivers, and family members with essential services and resources at every step of their cancer journey. Ask us how you can get involved and support the fight against cancer. Some of the topics we can assist with include:
- Referrals to patient-related programs or resources
- Donations, website, or event-related assistance
- Tobacco-related topics
- Volunteer opportunities
- Cancer Information
For medical questions, we encourage you to review our information with your doctor.
- Triggering Signals of BRCA1 Breast Cancer (K Kessenbrock)
- Testing Diverse Groups Finds New Breast Cancer Genes (L Teras)
- Black Women & Genetic Testing (J Palmer)
- Women 65+ & Genetic Tests for Breast Cancer Risk (L Teras)
- High-Risk Genes and Screening (A Patel)
- New Risk Calculation May Affect Breast Cancer Screening (L Teras)
- Black Men and Breast Cancer (H Sung)
- Platelets May Help Breast Cancer Spread (E Battinelli)
- Natural Killer Cells & TNBC (R. Chakrabarti)
- Improving Chemotherapy (O Sahin)
- Combo Treatment for TNBC (K Varley)
- Treatments Attack Cell Division (A Holland)
- ER+ Treatment in Mice (P Kenny)
- Blood DNA Monitors Metastasis Treatment (H P Ji)
- PTK6 Gene as Treatment Target (H Irie)
- Time-Lapse Cell Movies (S Spencer)
- 3D Mini Breast Tumors May Help ID New Cancer Treatments
- AI Tool Improves Breast Cancer Prognosis Accuracy
- Exercise & Sitting Time (E. Rees-Punia)
- Cancer Risk Factors in LGBTQ Populations (B. Charlton)
- CPS-3 Disparities Studies
- Cancer Disparities in the US (F. Islami)
- Housing Assistance and Mammograms (H Lee)
- Clinical Trial Treatment Cost App (L Hamel)
- Podcasts, TheoryLab
- Patients Health Insurance Tool (M. Politi)
- Breast Cancer Treatment in Ethiopia (A. Jemal)
- Better Survival Requires Better Insurance (J Zhao)
- Medicaid Eligibility Limits (J Zhao)
- New Treatment for Neuroblastoma (A Heczey)
- Oncogenic Fusions AML (S Meshinchi)
- Genetic Risks (L Teras)
- New Medulloblastoma Drugs (J Rodriguez-Blanco)
- Potential New Hope for MLL (J Grembecka)
- Increase in Brain Tumor Diagnosis (K Miller)
- Longer Life Expectancy for Survivors (J Yeh)
- Potential Target for New Osteosarcoma Drugs (C Benavente)
- At-Home Chemo for Children with HR ALL (L Ranney)
- Childhood Cancer Research Landscape Report
- Tumor-Infiltrating Neutrophils (R. Sumagin)
- New Epigenetic Target (K Rai)
- Extra Chromosomes (Aneuploidy) Effect on Cancer (J. Sheltzer)
- Discovery of a New Biomarker Is the First Step to New Treatment (C. Maher)
- Designer Virus Targets and Kills CRC Cells in Mice (S. Warner)
- Tiny Sensor in Mice May Find Cancer That's Trying to Spread (L. Hao)
- Targeting a Protein “Turned on” by Mistake (N. Gao)
- Spatial Map Intestines (J Hickey)
- CRC Treatment Podcasts
- Keto Molecule & Colorectal Cancer (M Levy)
- Availability of Healthy Food (L Tussing-Humphreys)
- 45 Min/Day of Physical Activity (A Minihan)
- Fewer than 10K Steps/Day (A Patel)
- Yogurt & Cheese & ER- Breast Cancer (M McCullough)
- Stage 2 Clinical Trials for New Endometrial Cancer Drug (V Bae-Jump)
- Hard-to-Starve Pancreatic Cancer Cells (N Kalaany)
- Coffee Risks for Colorectal Cancer (C Um)
- Food Parasite & Brain Cancer Risk (J Hodge)
- Exercise & Quality of Life in Older Survivors (E Rees-Punia)
- 21 Metabolites Linked with Breast Cancer (Y Wang)
- Replacing Sitting May Affect Weight (E Rees-Punia)
- CPS-3 Researchers Ask What People Eat and Check Urine Samples (Y Wang)
- Video Games Motivate Exercise? (E. Lyons)
- Food Choices and Colon Cancer Risk (P. Chandler)
- Race, Exercise & Breast Cancer (C. Dallal)
- Diet with Colorectal Cancer (M. Guinter)
- Biomarkers May Improve Prediction (Y Wang)
- Kickstart NSCLCs Clinical Trials (L. Eichner)
- Mapping Mitochondria's “Dance” (D. Shackleford)
- E-Cig Use Ages 18 to 29 (P. Bandi)
- Stopping Smoking Earlier in Life (F Islami)
- Most with Lung Cancer Smoked (A Jemal)
- Furthering Lung Cancer Screening & Equity (S Fedewa)
- Mouse Lung Organoids for Research (C Kim)
- Quality of Life for Lung Cancer Survivors (J Temel)
- Precision Therapies for NSCLC (P Jänne)
- Cancer Deaths from Smoking (F Islami)
- Lung Cancer Surgery Disparities (A Jemal)
- BRG1-Deficient Lung Cancers (C Kim)
- Yoga for Couples with Lung Cancer (K Milbury)
- Metabolic Differences as New Drug Targets (A Marcus)
- CPS-II & CPS-3 Inform About Risks of Ovarian Cancer
- Machine Learning & Glowing Nanosensors (D Heller)
- Ovarian Cancer May Start in Fallopian Tube Cells (K Lawrenson)
- New Gene Linked with Deadliest Type (C Han)
- Gene-Testing Tools May Personalize Care (A Sood)
- Chromosome-Hoarding Ovarian Cancer Cells & Treatment (J Sheltzer)
- Nanoparticles as Drug Delivery for Metastases (X Lu)
- Turning Off 2 Proteins to Slow HGSC (P Kreeger)
- Targeted Light Therapy in Mice (M Bai)
- Nanoparticles, CAR T, and CRISPR (M Stephan)
- Endometriosis & Ovarian Cancer in Mice (M Wilson)
- Ovarian Cancer Special Section
- UV Exposure, Melanoma, & Dark Skin Types (A. Adamson)
- Melanoma and Lipid Droplets (R. White)
- Zebrafish and Acral Melanoma (R. White)
- T-Cell Lymphoma and PD1 (J. Choi)
- New Drug Destroys Cancer-Causing Protein (C. Crews)
- Virus & Merkel Cell Skin Cancer (R. Wang)
- Non-Genetic Drug Resistance (S. Spencer)
- Hijacking the Body's Sugar (R. Wang)
- Telling about High Risk (P. Kanetsky)
- Brain Metastasis and Alzheimer’s (E. Hernando)
- Exhausted Melanoma "Killer" Cells (W. Cui)
Scientists ID Signals That May Trigger BRCA1 Breast Cancer
An ACS-funded researcher may have found a future drug target to help prevent BRCA1-related breast cancer – signals from the stroma to the epithelium.
The Challenge
About 55% to 72% of women who inherit a damaged (mutated) BRCA1 gene will develop breast cancer by age 70 or 80. That’s a much higher risk compared to women in the general population who don’t have the mutant gene - about 13% of them will develop the disease. Plus, people who have inherited this damaged gene tend to develop cancer at younger ages than people who haven’t, and they’re more likely to develop cancer in both breasts.
These high risks have long kept scientists seeking answers about why and how BRCA1-associated breast cancer develops. They hope that a better understanding of this cancer’s biological causes will lead to better prevention, detection, and treatment.
About 10% of breast cancers develop in lobules and are called invasive lobular carcinomas. Most often, breast cancers develop in the milk ducts and are called invasive ductal carcinomas. The word carcinoma describes tumors that start in the epithelial cells.
Many studies have found that when a damaged BRCA1 gene leads to breast cancer, it starts with changes in the epithelial cells that line the inside of the ducts, called luminal cells. The specific cells where cancer starts are often called luminal progenitor cells.
There have been fewer studies about how other types of breast cells, particularly stromal cells, may change and contribute to the development of cancer, especially as it relates to hereditary genetic mutations such as BRCA1.
Featured Term:
Stroma
The stroma is the cells and tissues that support and give structure to organs, glands, or other tissues in the body.It’s made mostly of connective tissue (made mostly of fibroblasts), blood vessels, lymphatic vessels, immune cells, and nerves.
The stroma provides nutrients to other tissues and organs, removes waste and extra fluid, and may be involved in the body's immune response by modulating inflammation levels. When stromal cells secrete growth factors, they promote tumor growth, invasion, and metastasis.
The Research
American Cancer Society (ACS) research scholar, Kai Kessenbrock, PhD, studies how cells in the breast develop early changes that lead to breast cancer, specifically BRCA1-associated breast tumors.
He recently published a study in Nature Genetics that involved mice with an inherited mutated BRCA1 gene. The team also analyzed pre-cancerous tissue with and without BRCA1 mutations in a 3D cellular model in the lab.
The epithelial cell may be the first place hereditary breast cancer starts, but something else—in the stroma, we think—is influencing those epithelial cells to mutate.”
Kai Kessenbrock, PhD
University of California, Irvine
ACS Grantee
“In the past, scientists were primarily focused on BRCA1’s effect on epithelial cells. In our lab, we found that women with germline BRCA1 mutations have distinct precancerous changes within various stromal cells—those cells outside of and around the ducts," Kessenbrock says.
“That means the epithelial cell may be the first place hereditary breast cancer starts, but something else—in the stroma, we think—is influencing those epithelial cells to mutate,” he explains.
Kessenbrock and his team found that breast tissue with a mutated BRCA1 gene but without any cancer present had many more luminal progenitor cells that had changed from their normal state. The cells also had more genes prompting tumor cells to grow rapidly.
The team found two striking differences between human cells in their lab that were BRCA1-mutation carriers and that were noncarriers:
- In BRCA1-mutated carriers, cells that help make up the connective tissue in the stroma - called fibroblasts - had a cancer-associated type (known as a CAF) before any cancer had developed.
- Those BRCA1-mutated fibroblasts had higher amounts of the gene that codes for the enzyme MMP3 (matrix metalloproteinase), which promotes breast cancer during aging and increases genetic instability.
The researchers also revealed something that had been completely unknown: BRCA1-mutated carriers had more MMP3-positive stromal cells close to epithelial structures, suggesting a direct link between MMP3 and an increased risk of developing breast cancer.
Plus, the increase in MMP3 was “particularly significant” around the lobules. The study authors note that this location could indicate that tumors with a BRCA1 mutation may start “predominately in lobular rather than ductal regions.”
They had similar findings in their mouse studies.
Why Does It Matter?
Kessenbrock’s findings about MMP3 levels in the breast stroma and its location add new evidence to other reports that point to BRCA1-mutated breast cancers starting in luminal progenitor cells. More studies still need to be done, but Kessenbrock is hopeful.
“Our findings that stromal cells cause hereditary breast cancer in mice may help lead to new ways of monitoring and treating people with BRCA1 mutations. What’s more, anti-cancer drugs that block the effects of MMP3 may one day have the potential to prevent these breast cancers in women with high-risk BRCA1 mutations,” he says.
Past studies using MMP3 inhibitor drugs have not shown promising results. But the study authors note that those trials focused on people with late-stage cancers. To learn how well targeting stromal-epithelial interactions might work requires a study designed to include people with a mutated BRCA1 gene who have not developed cancer.
- 21 Metabolites Linked with Breast Cancer (Y Wang)
- AI Tool Improves Breast Cancer Prognosis Accuracy
- Black Women & Genetic Testing (J Palmer)
- Coffee Risks for Colorectal Cancer (C Um)
- Colorectal Cancer Research Highlights
- CPS-3 Disparities Studies
- CPS-3 Researchers Ask What People Eat and Check Urine Samples (Y Wang)